1. **MODEL:**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>S100RMS</td>
</tr>
<tr>
<td></td>
<td>G50</td>
</tr>
</tbody>
</table>

2. **Dimension & Weight**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer Diameter</td>
<td>28(\phi) mm</td>
</tr>
<tr>
<td>Face side Dimension</td>
<td>26.5(\phi) mm</td>
</tr>
<tr>
<td>Baffle Opening</td>
<td>26.5(\phi) mm</td>
</tr>
<tr>
<td>Height</td>
<td>Refer to drawing</td>
</tr>
<tr>
<td>Weight</td>
<td>9.8 Grams</td>
</tr>
</tbody>
</table>

3. **Magnet**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials</td>
<td>Rare Earth</td>
</tr>
<tr>
<td>Size</td>
<td>18x10x2.0 mm</td>
</tr>
</tbody>
</table>

4. **Nominal Impedance**

\[8 \Omega \pm 15\%, \text{At} \ 1000 \text{ Hz.}\]

5. **Power Rating**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0.5 Watts</td>
</tr>
<tr>
<td>Maximum</td>
<td>1.0 Watts Sine Wave</td>
</tr>
</tbody>
</table>

6. **Resonant Frequency**

\[700 \pm 20 \% \text{ Hz.}\]

7. **Output Sound Pressure Level (S.P.L.)**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>80 (\pm 3) dB</td>
<td>0.5 Watt (- 1.0) Meter</td>
</tr>
<tr>
<td>Average at</td>
<td>1000, 1200, 1500, 2000 Hz</td>
</tr>
</tbody>
</table>

8. **Frequency Range**

\[500 \sim 9000 \text{ Hz. Average SPL} \sim 10 \text{ db.}\]

9. **Distortion**

\[5\% \text{ Maximum At} \ 1000 \text{ Hz.} \ 0.5 \text{ W.}\]

10. **Abnormal Sound test**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Must be Normal Tested By</td>
<td>2.0 Volts. Sine Wave</td>
</tr>
</tbody>
</table>

11. **Load Test**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>White Noise</td>
<td>2.0 Volts. (RMS.) 96 Hours</td>
</tr>
</tbody>
</table>

12. **Polarity**

Diaphragm shall move Forward while Apply a Positive DC Signal to the "+" or " Marked " Terminal.

Above Measuring condition under temperature : 25~35°C R.H. 25~75%. According to standard GB/T9395-1996

Mechanical and vibration test

13. **High Temperature**

\[+60 \pm 2 \text{ °C} \text{ Humidity Random for 96 Hours. (GB2423.2-81)}\]

14. **Low Temperature**

\[-25 \pm 2 \text{ °C} \text{ Humidity Random for 96 Hours. (GB2423.1-81)}\]

15. **Humidity**

\[+40 \pm 2 \text{ °C} \text{ Relative Humidity (RH) 90 \sim 95 \% 96 Hours.}\]

16. **Vibration**

Frequency 30 \pm 15 Hz, Amplitude 1.5 mm for 3 Hours. (GB11606.8-89)

17. **Drop test**

75 CM free falling on Concrete floor, 10 times. (GB2423.8-81)

After test leave speakers at room temperature for 1 hour, SPL shall not deviate by \(\pm 3 \text{ dB from pre-test}\)

18. **Temperature Cycle test**

\[-25 \sim +60 \text{ °C} \text{ 4 Cycles Temperature test. (GB5170.18-87)}\]

After test leave speakers at room temperature for 1 hour, SPL shall not deviate by \(\pm 4 \text{ dB from pre-test}\)

Measurement, and meet above spec. item 6. 7. 8. 9. 10.

Please refer to next pages for more detailed testing method.

Revised 1/6/08
Test method and User precaution.

1. Characteristics measured according to standard GB/T 9396-1996
 1.1 Except other specified, measuring are under Temperature 25~35°C R.H. 25~75%
 1.2. Judgement condition Temperature 20±2 R.H. 63~67%

2. Output Sound Pressure Level (S.P.L.) and distortion testing setup

 ![Diagram of test setup](image)

 Anechoic Chamber
 400x400x300 cm Chamber F

3. Environment & Mechanical test:
 - **3.1 High Temperature: GB2423.2-81**
 After exposure the speaker in the +60 ± 2 °C chamber for 96 hours, then leave the speaker at room temperature for 1 hour, the SPL should not deviate by ±3 db, and resonant frequency should not deviate by ±50 Hz, compare with pre-test measurement.
 - **3.2 Low Temperature: GB2423.1-81**
 After exposure the speaker in the −25 ± 2 °C chamber for 96 hours, then leave the speaker at room temperature for 1 hour, the SPL should not deviate by ±3 db, and resonant frequency should not deviate by ±50 Hz, compare with pre-test measurement.
 - **3.3 Temperature cycle: GB5170.18-87**
 After exposure the speaker in the chamber, temperature cycle setting as below shows, SPL should not deviate by ±4 db, and resonant frequency should not deviate by ±80 Hz, compare with pre-test measurement.
3.4 Humidity: GB5170.18-87

After exposure the speaker in the +40±2 °C, relative humidity 90% ~ 95% chamber for 96 hours, then leave the speaker at room temperature for 6 hours, the SPL should not deviate by ±3 db, and resonant frequency should not deviate by ±50 Hz, compare with pre-test measurement.

3.5 Vibration: GB11606.8-89

Frequency 30±15 Hz, Amplitude 1.5 mm for 3 Hours. After test, SPL shall not deviate by ±3 db from pre-test measurement.

3.6 Load test: GB/T 9396-1996

Speaker should not fail after apply 20 ~ 20K Hz white noise rated power input (RMS), 96 hours. After test, SPL shall not deviate by ±3 db from pre-test measurement.

3.7 Drop test: GB2423. 8-81

75 cm free falling on concrete floor, 10 times. After test, SPL shall not deviate by ±3 db from pre-test measurement.

4. Mounting precaution

In order to keep speaker work normally, there shall leave enough free space for diaphragm moving, minimum distance required is marked in speaker mechanical drawing.

5. Measuring & standard referenced

5.1 Maximum input voltage

Maximum input voltage is in the shortest time. The speaker can bear simulation signal, that persist time is 1 second, interval 60 seconds, repeated 60 times, but the speaker wouldn't be damaged externally. The maximum signal voltage is the maximum input voltage in the shortest time.

5.2 Rated sine voltage.

It is stipulated by manufacturer, sine signal voltage that make speaker work continuously in rated frequency range, but the speaker wouldn't be damaged heartily or mechanically. The persist time of the voltage is 1 hour.

5.3 The shortest time maximum power.

It is corresponding with the shortest time maximum input voltage, its definition is U_{st}^2/R, U_{st} indicates the shortest input power, R indicates the rated impedance.

5.4 The long time maximum power.

The long time maximum power is corresponding with the long time maximum input voltage, its definition is U_{l1}^2/R, U_{l1} indicates the long time maximum input voltage, R indicates the rated impedance.

5.5 The rated sine power.

The rated sine power is corresponding with the rated sine voltage, its definition is U_s^2/R, U_s indicates the maximum sin voltage, R indicates the rated impedance.

5.6 The rated noise power.

The rated noise power is corresponding with the rated noise voltage, its definition is U_n^2/R, U_n indicates the rated noise voltage, R indicates the rated impedance.
S100RMS VOL: 2.0V (0.5W) DIS: 1M

Current Curve: 0 X: 1000 Hz Y: 80.20 dB
MOUNTING NOTICE

AT LEAST 0.5mm FOR DIAPHRAGM MOVING

<table>
<thead>
<tr>
<th>V1.0</th>
<th>06.05.09</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>Unit: mm</td>
</tr>
<tr>
<td>S100RMS</td>
<td>CHK.: 刘云华</td>
</tr>
<tr>
<td>Tol.: 允许±1/2IT13</td>
<td></td>
</tr>
</tbody>
</table>